If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4y^2+50y+200=0
a = -4; b = 50; c = +200;
Δ = b2-4ac
Δ = 502-4·(-4)·200
Δ = 5700
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5700}=\sqrt{100*57}=\sqrt{100}*\sqrt{57}=10\sqrt{57}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(50)-10\sqrt{57}}{2*-4}=\frac{-50-10\sqrt{57}}{-8} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(50)+10\sqrt{57}}{2*-4}=\frac{-50+10\sqrt{57}}{-8} $
| -4y+50y+200=0 | | x^2-12.5x-50=0 | | 5z^2=^16 | | 5z^2=—17 | | ∣−k−4∣≤3=1 | | 5y-3=24+2y | | 5x=2.4=-6x+7.9 | | y³-10y²+25y=0 | | 4x/5+5=17 | | 0.14=8+(100-x)÷x | | x^2=8x=20 | | X^-(5-i)+(18+i)=0 | | (0.050+x)(0.040+x)=(0.045-x)(0.40-x)*0.517 | | 0.050+x)(0.040+x)=(0.045-x)(0.40-x)0.517 | | -8-8(3v+5)=-4(7v-3) | | 0.3x^2-4x+100=0 | | -0.3x^2+4x-100=0 | | (0.050+x)(0.040+x)=(0.045-x)(0.40-x) | | 3x+10=11+x | | 0.3x^2+4x-100=0 | | 0.3x^2+4x-115.2=0 | | X7+7y=84 | | 2((x+3)=3(x-3) | | 16x^2+10x-100=0 | | 2/y+9/2y=-13/4 | | Z^7=1+i | | d^2=2880 | | 4(1-2p)=36 | | 11+2p=6-3p | | 8x²+26x+15=0 | | x²+25x+156=0 | | 8x+20=2x-12 |